SW Dependablllty

Maria Hernek, ESA/Estec

Maria.Hernek @esa.int

=NNESC HI RN E NS N B B [

SW Dependability Methods

SAS July 2006

= = O H N T B E

Software implements System functionality

>

An exponential increase in On-
Board software functionality.

Increase in software complexity.

Amount of software on-board
increases, from few Kkbyte in
early 80t to many Mbytes today.

SOHO, 1995 2*64 KB
Rosetta, 2003, 2*1MB
ATV, 2006, SMB

SAS July 2006

= NS D B B T

System vs. Software Dependability and Safety

pendability and Safety needs to be
al software requirements.

d Safety is primarily to handle typical software
ock, task overrun, buffer overflow, division by

1 Safety requirements need to be specified to
. through FDIR, watch-dog, exception handling,
gency.

endability and Safety Requirements : derived
ability and Safety

Jability and Safety Requirements : defined by
1 Safety

SAS July 2006

= NS H NN 8 e B N

ECSS standard

Space project

management

EUROPEAN COOPERATION

IDcss/

FOR SPACE STANDARDIZATION

Space product .
assurance i =
Crimping of high-re llobiity elechric:
conneclicny

Three levels:
1-Level: Strategy
2-Level: Objective and Function

3-Level: Methods, procedures, tools

SAS July 2006

=N = T H N R e

SW Fault handlmg activities, ECSS Q80-03

SW Fault Prevention SW Fault Removal SW Fault Tolerance
Methods

Methods Methods

req. & architecture

gineering process

design &
plementation

process

ccepta}&QproceS%

SW validation process

SAS July 2006

= NS H NN 8 e B N

Methods identified in ECSS Q80-03 to support the
assessment of software dependability and safety

all analysis activities
the execution of the software

SAS July 2006

=INESCH RN E TR E

3 B =

SW Dependability Methods, objective

SAS July 2006

design/implementation does not contribute

re correctly interacts with HW and that
considered

iInto account in the software

il not cause the software to overstress
change failure severity consequences on

=EREHNEEHIIEL IIEEE EE

Dependability assessment methods applicable to life

Software FMECA

1+

cycle phases

Software Fault Tree Analysis

Hw-Sw Interaction Analysis

Software Hazard Analysis

Software Common Cause analysis

In Service History

Engineering analysis

SAS July 2006

most ap I|cable

SW Depend

less applicable

=INESCH RN E TR E

Design Constraints

A number of Dependability and Safety constraints force the adoption of
Techniques and rules during design and implementation activities

0 prevent faults
tions to tolerate faults

Design & Coding Practices
Defensive Programming
Assertion Programming
Recovery Blocks
Segregation/Partitioning
Watchdog
Alive flag

SAS July 2006

=RHNEEHIIL IIBEEE EE

Fault Removal Techniques

Testing activities
which require the execution of the software

White Box Testing Black Box Testing
Statement Coverage Back-to-Back Testing
Branch Coverage Interface Testing
Path Coverage Stress Testing
Basis Path Coverage Statistical Testing
Multiple Condition Coverage Monte-Carlo Simulation
Linear Code Sequence and Jump Coverage Simulation

Data Flow Coverage

Loop Testing

Cause-Effect Graphing Technique -
Fault Injection Test Analysis
Run-Time Anomaly Detection Test Result Analysis

Test Coverage Analysis

Test Witnessing

Test Data Selection Fault Seeding

Boundary Value Analysis Mutation Analysis

Equivalence Partitioning Sensitivity Analysis

Regression Analysis

SAS July 2006 SW Depend

=NNESC HI RN E NS N B B [

SW Dependability Methods

Analyse

t WCEA

SAS July 2006

=NNESC HI RN E NS N B B [

SW Worst Case Execution Analyse

st feasible execution path, calculate execution
model

It to simulate
e execution times with worst case initial state and

SAS July 2006

=INESCH RN E TR E

Cache processor

st recently accessed memory words,

hit, read-miss, write-hit, write-miss,
hing

S: Least recently used (LRU)

SAS July 2006

= NS H NN 8 e B N

LEON processor, architecture

Local ram

AHB Memaory AMEBA AFE AHBAPE
Conlrollar Conirollar | | | | Bridge

UARTS Temers IrgClil VO port
e m = —m m e s == e = = — = — = — = — 4
BRGA2-tits mem b

][| o] [

SAS July 2006

= NS N N B e T

LEON processor characteristics

below 70 MeV/mg/cm2

ata cache (Harvard architecture)
4 sets, 1 - 64 kbytes/set. Random,

SAS July 2006

=NNESC HI RN E NS N B B [/i

Cache impact on execution time KQ; Z
r

cution time depends on actions
m which influenced the state of

ecution time depends on actions
gher-priority pre-empting task

SAS July 2006

=NNESC HI RN E NS N B B [

Cache control mechanisms

rtain parts of
in — reduce
current impact

ffer
Igurable — can

acific memory

cache content

SAS July 2006

=INESCH RN E TR E

Verification problems caused by cache

of modules executed on real HW - First
ertainty

for test cases with different scenarios -
t cache impacts varies for different test runs.
ight SW memory addresses are different

erification of real-time performance
synchronization routines and kernel operations

SAS July 2006

= NS D B B T

Design and code patterns influencing cache
performance

ucture that under specific circumstances
yut under other circumstances the cache

aiche risk

es cache killer or cache risk during its
tches

SAS July 2006

=INESCH RN E TR E

Cache killer pattern

placed in different 8KB areas and the
set.

SAS July 2006

=INESCH RN E TR E

Cache risk pattern

only rarely

se the loop calls only four packages and

SAS July 2006

=INESCH RN E TR E

Concurrent impact patterns

Pkg3.P3;
<wait for something>;

end High;

utes with no cache misses

SAS July 2006

=INESCH RN E TR E

Questions we need to answer:

ache killer/risk effect?
tion time?
rgin is needed?

cache memory?
your Schedulability analysis?
ance failure tolerance”?

SAS July 2006

=DINESCHHENEE T8 BE A E

Software Dependability Methods

astions?

Maria Hernek, ESA/Estec

Maria.Hernek @esa.int

SAS July 2006

